Архитектурная акустика/Интеграл Релея: различия между версиями

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску
Строка 64: Строка 64:
Пусть <math>R_s = \sum\limits_{i=1}^{|S|}|s_i.</math><tt>Излучаемый звук()</tt><math>|</math> - суммарное количество лучей от всех первичных источников.
Пусть <math>R_s = \sum\limits_{i=1}^{|S|}|s_i.</math><tt>Излучаемый звук()</tt><math>|</math> - суммарное количество лучей от всех первичных источников.


Тогда сложность: <math>O\left(R_s^{\frac{\max\limits_{i=1,N_s}\left(I(s_i)\right)}{I_0}}\right)</math>, где <math>I\left(s\right) = \max\limits_{\forall\omega\in B\left(s\right)}</math><tt>(s.Интенсивность(0, 0, <math>\omega</math>))</tt> - максимальное значение характеристики звука, излучаемого источником <math>s</math> по частотам <math>B\left(s\right)</math>, на которых определена его АЧХ, <math>I_0</math> - пренебрежимый уровень звука (свойство [[Архитектурная акустика/Среда распространения звука|среды распространения]]).
Тогда сложность: <math> N_{total} = 1 + \frac{N \cdot(1-(\tau N)^{n_{r}-1})}{1-\tau N} ,</math> где


<math> N_{total} = 1 + \frac{N \cdot(1-(\tau N)^{n_{r}-1})}{1-\tau N} </math>
<math> n_r =  \log_{\nu}\frac{I_0}{I},</math>      <math>I_0</math> - пороговое значение энергии, <math>I</math> - начальное значение энергии,
 
 
<math>\nu=\frac{\sum_{\forall f\in F} S(f) \cdot \nu(f)}{\sum_{\forall f\in F} S(f)}</math> - средний коэффициент поглощения,
 
 
<math> N=|W(s_i)|\cdot \sum_{\forall f\in F} |f|, </math> так как 
 
<math>1 \to N \to N \cdot \tau N \to \cdots \to N \cdot (\tau N)^{n_r}</math>

Версия 01:30, 26 октября 2016

Архитектурная акустика\Интеграл Релея

Модель распространения звука в помещении, в которой каждая поверхность представлена в виде системы плоских колеблющихся поршней. Каждый такой поршень при попадании на него звукового луча оказывается вторичным источником звука.

Направленность такого источника рассчитывается с помощью интеграла Релея:

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi\left(\theta, \varphi, r\right) = \frac{V_0 e^{i\cdot\left(\omega t+\varphi\right)}}{2\pi}\iint\limits_{S}{\frac{e^{-ikr'\left(\theta, \varphi, r\right)}}{r'\left(\theta, \varphi, r\right)}dS} ,

где:

  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi(\theta, \varphi, r) - потенциал колебательной скорости в точке, заданной в сферической системе координат, в которой Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \theta = 0, \varphi = 0, r = 1 - единичный вектор сонаправленный главной оси источника.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S - поверхность или ее часть, которая которая колеблется как поршень.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): dS - малый элемент поверхности в окрестности некоторой точки Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (x, y) , принадлежащей поверхности и заданной в системе координат поверхности, в которой аппликата сонаправлена главной оси источника.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): V_0 - амплитуда колебательной скорости.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega - круговая частота колебаний поршня.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t - время измерения направленности.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - начальная фаза колебаний.
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i = \sqrt{-1} .
  • Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r'\left(\theta, \varphi, r\right)=\sqrt{\left(r\sin\varphi\cos\theta-x\right)^2 + \left(r\sin\varphi\sin\theta-y\right)^2+\left(r\cos\varphi\right)^2} .


Алгоритм

Предусловия:

  1. M - Среда распространения звука;
  2. SC = M.Множество источников();
  3. PC = M.Множество отражающих элементов()
  4. PlC = M.Множество контрольных точек() - множество плоскостей вывода результатов.
  5. расстояние(точка1, точка2) - функция расстояния между двумя точками.

Течение алгоритма:

  1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): SC' \gets SC - изменяемое множество всех источников.
  2. Если SC' пусто.
    1. Завершение алгоритма.
  3. Для всех источников Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s\in SC'
    1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): SC' \gets SC' \setminus s
    2. Пусть множество лучей: RS = s.Излучаемый звук()
    3. Для всех лучей Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r\in RS
      1. Если r.Интенсивность() > M.Пренебрежимый уровень звука()
        1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): PlC' = \left\{pl_i\right\}\subset PlC: \exists pt = pl_i\cap r\land расстояние(r.Позиция(), pt)расстояние(r.Позиция(), r.Ближайшая поверхность(PC)Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap r) - множество плоскостей вывода результатов, с которыми существуют пересечения луча Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r , и которые не находятся в тени.
        2. Для всех плоскостей Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): pl\in PlC'
          1. Точка пересечения
          2. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I\gets r.Интенсивность(расстояние(r.Позиция(), pt))
          3. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I > M.Пренебрежимый уровень звука()
            1. pl.Зарегистрировать звук(pt, I, r.Частота())
        3. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \exists f = r.Ближайшая поверхность(PC)
          1. Пусть
          2. Если r.Интенсивность(расстояние(r.Позиция(), P)) > M.Пренебрежимый уровень звука()
            1. Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): f' - плоская круглая поверхность диаметром, равным длине волны звука, ассоциированного с лучом Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r (см. r.Частота()), вокруг точки пересечения P.
            2. s' = Вторичный источник на основе интеграла РелеяНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (f\cap f', r, f \cap r)
            3. - дополнение множества SC' новым вторичным источником s'
  4. Переход на шаг 2.
Граф параллельного выполнения алгоритма. Для краткости используются сокращенные записи методов сущностей архитектурной акустики: .Интенсивность(); Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I\left(r, pt\right)\sim r .Интенсивность(расстояние(r.Позиция(), pt)); Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I_0\sim M .Пренебрежимый уровень звука(); Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega\left(r\right)\sim r .Частота(); Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): pl.Reg\left(pt, I, \omega\right)\sim pl .Зарегистрировать звук;

Свойства алгоритма

Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S - множество первичных источников (см. свойство множество источников() среды распространения звука).

Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_s = \sum\limits_{i=1}^{|S|}|s_i. Излучаемый звук()Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): | - суммарное количество лучей от всех первичных источников.

Тогда сложность: Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): N_{total} = 1 + \frac{N \cdot(1-(\tau N)^{n_{r}-1})}{1-\tau N} , где

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): n_r = \log_{\nu}\frac{I_0}{I}, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I_0 - пороговое значение энергии, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I - начальное значение энергии,


Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \nu=\frac{\sum_{\forall f\in F} S(f) \cdot \nu(f)}{\sum_{\forall f\in F} S(f)} - средний коэффициент поглощения,


Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): N=|W(s_i)|\cdot \sum_{\forall f\in F} |f|, так как

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): 1 \to N \to N \cdot \tau N \to \cdots \to N \cdot (\tau N)^{n_r}