Архитектурная акустика/Интеграл Релея: различия между версиями
| Строка 33: | Строка 33: | ||
## Пусть множество лучей: <tt>RS = s.Излучаемый звук()</tt> | ## Пусть множество лучей: <tt>RS = s.Излучаемый звук()</tt> | ||
## Для всех лучей <math>r\in RS</math> | ## Для всех лучей <math>r\in RS</math> | ||
### Если | ### Если <tt>r.Интенсивность() > M.Пренебрежимый уровень звука()</tt> | ||
#### <math>PlC' = \left\{pl_i\right\}\subset PlC: \exists pt = pl_i\cap r\land</math><tt>расстояние(r.Позиция(), pt)</tt><math>\leq</math><tt>расстояние(r.Позиция(), r.Ближайшая поверхность(PC)</tt><math>\cap</math><tt>r)</tt> - множество плоскостей вывода результатов, с которыми существуют пересечения луча <math>r</math>, и которые не находятся в тени. | |||
##### Для всех плоскостей <math>pl\in PlC'</math> | |||
# | ###### Точка пересечения <math>pt \gets pl\cap r</math> | ||
### <math>PlC' = \left\{pl_i\right\}\subset PlC: \exists pt = pl_i\cap r\land</math><tt>расстояние(r.Позиция(), pt)</tt><math>\leq</math><tt>расстояние(r.Позиция(), r.Ближайшая поверхность(PC)</tt><math>\cap</math><tt>r)</tt> - множество плоскостей вывода результатов, с которыми существуют пересечения луча <math>r</math>, и которые не находятся в тени. | ###### <math>I\gets</math><tt>r.Интенсивность(расстояние(r.Позиция(), pt))</tt> | ||
#### Для всех плоскостей <math>pl\in PlC'</math> | ###### Если <math>I > </math><tt>M.Пренебрежимый уровень звука()</tt> | ||
##### Точка пересечения <math>pt \gets pl\cap r</math> | ####### <tt>pl.Зарегистрировать звук(pt, I, r.Частота())</tt> | ||
##### <tt>pl.Зарегистрировать звук(pt, r.Интенсивность(расстояние(r.Позиция(), | #### Если <math>\exists</math><tt>f = r.Ближайшая поверхность(PC)</tt> | ||
##### Пусть <math>P\gets f\cap r</math> | |||
##### Если <tt>r.Интенсивность(расстояние(r.Позиция(), P)) > M.Пренебрежимый уровень звука()</tt> | |||
###### Пусть <math>f'</math> - плоская круглая поверхность диаметром, равным длине волны звука, ассоциированного с лучом <math>r</math> (см. <tt>r.[[Архитектурная акустика/Луч|Частота()]]</tt>), вокруг точки пересечения P. | |||
###### <tt>s' = [[Архитектурная акустика/Вторичный источник на основе интеграла Релея|Вторичный источник на основе интеграла Релея]]</tt><math>(f\cap f', r, f \cap r)</math> | |||
###### <math>SC' \gets SC' \cup \left\{s'\right\}</math> - дополнение множества <tt>SC'</tt> новым вторичным источником <tt>s'</tt> | |||
Версия 11:09, 1 июня 2016
Модель распространения звука в помещении, в которой каждая поверхность представлена в виде системы плоских колеблющихся поршней. Каждый такой поршень при попадании на него звукового луча оказывается вторичным источником звука.
Направленность такого источника рассчитывается с помощью интеграла Релея:
,
где:
- - потенциал колебательной скорости в точке, заданной в сферической системе координат, в которой - единичный вектор сонаправленный главной оси источника.
- - поверхность или ее часть, которая которая колеблется как поршень.
- - малый элемент поверхности в окрестности некоторой точки , принадлежащей поверхности и заданной в системе координат поверхности, в которой аппликата сонаправлена главной оси источника.
- - амплитуда колебательной скорости.
- - круговая частота колебаний поршня.
- - время измерения направленности.
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - начальная фаза колебаний.
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i = \sqrt{-1} .
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r'\left(\theta, \varphi, r\right)=\sqrt{\left(r\sin\varphi\cos\theta-x\right)^2 + \left(r\sin\varphi\sin\theta-y\right)^2+\left(r\cos\varphi\right)^2} .
Алгоритм
Предусловия:
- M - Среда распространения звука;
- SC = M.Множество источников();
- PC = M.Множество отражающих элементов()
- PlC = M.Множество контрольных точек() - множество плоскостей вывода результатов.
- расстояние(точка1, точка2) - функция расстояния между двумя точками.
Течение алгоритма:
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): SC' \gets SC - изменяемое множество всех источников.
- Для всех источников Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s\in SC'
- Пусть множество лучей: RS = s.Излучаемый звук()
- Для всех лучей Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r\in RS
- Если r.Интенсивность() > M.Пренебрежимый уровень звука()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): PlC' = \left\{pl_i\right\}\subset PlC: \exists pt = pl_i\cap r\land
расстояние(r.Позиция(), pt)Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leq
расстояние(r.Позиция(), r.Ближайшая поверхность(PC)Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap
r) - множество плоскостей вывода результатов, с которыми существуют пересечения луча Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r
, и которые не находятся в тени.
- Для всех плоскостей Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): pl\in PlC'
- Точка пересечения Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): pt \gets pl\cap r
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I\gets r.Интенсивность(расстояние(r.Позиция(), pt))
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I >
M.Пренебрежимый уровень звука()
- pl.Зарегистрировать звук(pt, I, r.Частота())
- Для всех плоскостей Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): pl\in PlC'
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \exists
f = r.Ближайшая поверхность(PC)
- Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): P\gets f\cap r
- Если r.Интенсивность(расстояние(r.Позиция(), P)) > M.Пренебрежимый уровень звука()
- Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): f' - плоская круглая поверхность диаметром, равным длине волны звука, ассоциированного с лучом Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r (см. r.Частота()), вокруг точки пересечения P.
- s' = Вторичный источник на основе интеграла РелеяНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (f\cap f', r, f \cap r)
- - дополнение множества SC' новым вторичным источником s'
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): PlC' = \left\{pl_i\right\}\subset PlC: \exists pt = pl_i\cap r\land
расстояние(r.Позиция(), pt)Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leq
расстояние(r.Позиция(), r.Ближайшая поверхность(PC)Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap
r) - множество плоскостей вывода результатов, с которыми существуют пересечения луча Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r
, и которые не находятся в тени.
- Если r.Интенсивность() > M.Пренебрежимый уровень звука()

Свойства алгоритма
Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S - множество первичных источников (см. свойство множество источников() среды распространения звука).
Пусть Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_s = \sum\limits_{i=1}^{|S|}|s_i. Излучаемый звук()Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): | - суммарное количество лучей от всех первичных источников.
Тогда сложность: Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): O\left(R_s^{\frac{\max\limits_{i=1,N_s}\left(I(s_i)\right)}{I_0}}\right) , где Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I\left(s\right) = \max\limits_{\forall\omega\in B\left(s\right)} (s.Интенсивность(0, 0, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega )) - максимальное значение характеристики звука, излучаемого источником Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s по частотам Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): B\left(s\right) , на которых определена его АЧХ, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): I_0 - пренебрежимый уровень звука (свойство среды распространения).