Распространение радиоволн ВЧ/Напряженность

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску

Трехкомпонентный комплексный вектор

Функции

Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)

Уменьшить по отражению(Напряженность, Коэффициент преломления_1, Коэффициент преломления_2, Угол)

Перпендикулярная поляризация
Параллельная поляризация

Пусть имеется граница раздела двух сред:

- комплексная диэлектрическая проницаемость, где

- диэлектрическая проницаемость среды,
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \sigma - проводимость среды
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega - круговая частота волны

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mu} - магнитная проницаемость

При учете инерционности поляризации и намагничивания вводятся следующие комплексные проницаемости:

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot \varepsilon = \varepsilon \cos \alpha - i ( \frac{\sigma}{\omega} + \varepsilon \sin \alpha)}

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot \mu = \mu \cos \beta - i \mu \sin \beta} , где

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha - угол диэлектрических потерь
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \beta - угол магнитных потерь

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot k = \omega \sqrt{\dot \varepsilon \dot \mu}} - комплексное волновое число

- комплексное волновое сопротивление

Коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot \rho_{\bot} = \frac {\dot W_2 \cos \varphi - \dot W_1 \cos \vartheta} {\dot W_2 \cos \varphi + \dot W_1 \cos \vartheta}}

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot \rho_{\|} = \frac {\dot W_2 \cos \vartheta - \dot W_1 \cos \varphi} {\dot W_2 \cos \vartheta + \dot W_1 \cos \varphi}} , где

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - угол падения
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vartheta} - угол отражения

Таким образом отраженная волна имеет вид Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec {\dot E}=\vec {\dot E_{\bot}}+\vec {\dot E_{\|}}}