Распространение радиоволн ВЧ/Напряженность: различия между версиями
Nigiluk (обсуждение | вклад) |
Nigiluk (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
==<tt>Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)</tt>== | ==<tt>Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)</tt>== | ||
==<tt> | ==<tt>Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))</tt>== | ||
<tt>*</tt> - комплексная диэлектрическая проницаемость, | <tt>*</tt> - комплексная диэлектрическая проницаемость, | ||
<tt>**</tt> - комплексная магнитная проницаемость. | <tt>**</tt> - комплексная магнитная проницаемость. | ||
Строка 44: | Строка 44: | ||
Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>. | Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>. | ||
На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани. | |||
#<math>V\leftarrow</math> <tt>Вектор(Направление луча)</tt> | |||
#<math>N\leftarrow</math> <tt>Вектор(Нормаль грани)</tt> | |||
#<math>E \leftarrow</math> <tt>Напряженность</tt> | |||
#<math>\varphi \leftarrow</math> <tt>Угол</tt> | |||
#<math>\varepsilon_1 \leftarrow</math> <tt>КДП_1</tt> | |||
#<math>\varepsilon_2 \leftarrow</math> <tt>КДП_2</tt> | |||
#<math>\mu_1 \leftarrow</math> <tt>КМП_1</tt> | |||
#<math>\mu_2 \leftarrow</math> <tt>КМП_2</tt> | |||
#<math>M_y \leftarrow \begin{bmatrix} \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} \\ 0 & 1 & 0 \\ -\frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} \end{bmatrix}</math> | |||
#<math>M_x \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \\ 0 & -\frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \end{bmatrix}</math> | |||
#<math>K \leftarrow N \times V</math> | |||
#<math>M_z \leftarrow \begin{bmatrix} \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & -\frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ \frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}</math> | |||
#<math>E \leftarrow E M_y M_x M_z</math> | |||
#<math>E(1) \leftarrow \rho_{\bot}E(1)</math> | |||
#<math>E(2) \leftarrow \rho_{\|}E(2)</math> |
Версия 00:41, 27 мая 2017
Трехкомпонентный комплексный вектор
Функции
Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)
Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))
* - комплексная диэлектрическая проницаемость, ** - комплексная магнитная проницаемость.
Пусть имеется граница раздела двух сред:
- комплексная диэлектрическая проницаемость, где
- - диэлектрическая проницаемость среды,
- - проводимость среды
- - круговая частота волны
- магнитная проницаемость
При учете инерционности поляризации и намагничивания вводятся следующие комплексные проницаемости:
, где
- - угол диэлектрических потерь
- - угол магнитных потерь
- комплексное волновое число
- комплексное волновое сопротивление
Коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):
, где
- - угол падения
Таким образом отраженная волна имеет вид
Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах
.На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани.
- Вектор(Направление луча)
- Вектор(Нормаль грани)
- Напряженность
- Угол
- КДП_1
- КДП_2
- КМП_1
- КМП_2