Распространение радиоволн ВЧ/Напряженность: различия между версиями

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску
Строка 3: Строка 3:
==<tt>Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)</tt>==
==<tt>Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)</tt>==


==<tt>Уменьшить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))</tt>==
==<tt>Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))</tt>==
<tt>*</tt> - комплексная диэлектрическая проницаемость,
<tt>*</tt> - комплексная диэлектрическая проницаемость,
<tt>**</tt> - комплексная магнитная проницаемость.
<tt>**</tt> - комплексная магнитная проницаемость.
Строка 44: Строка 44:


Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>.
Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>.
На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани.
#<math>V\leftarrow</math> <tt>Вектор(Направление луча)</tt>
#<math>N\leftarrow</math> <tt>Вектор(Нормаль грани)</tt>
#<math>E \leftarrow</math> <tt>Напряженность</tt>
#<math>\varphi \leftarrow</math> <tt>Угол</tt>
#<math>\varepsilon_1 \leftarrow</math> <tt>КДП_1</tt>
#<math>\varepsilon_2 \leftarrow</math> <tt>КДП_2</tt>
#<math>\mu_1 \leftarrow</math> <tt>КМП_1</tt>
#<math>\mu_2 \leftarrow</math> <tt>КМП_2</tt>
#<math>M_y \leftarrow \begin{bmatrix} \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} \\ 0 & 1 & 0 \\ -\frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} \end{bmatrix}</math>
#<math>M_x \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \\ 0 & -\frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \end{bmatrix}</math>
#<math>K \leftarrow N \times V</math>
#<math>M_z \leftarrow \begin{bmatrix} \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & -\frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ \frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}</math>
#<math>E \leftarrow E M_y M_x M_z</math>
#<math>E(1) \leftarrow \rho_{\bot}E(1)</math>
#<math>E(2) \leftarrow \rho_{\|}E(2)</math>

Версия 00:41, 27 мая 2017

Трехкомпонентный комплексный вектор

Функции

Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)

Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))

* - комплексная диэлектрическая проницаемость, ** - комплексная магнитная проницаемость.

Перпендикулярная поляризация
Параллельная поляризация
Поворот координатных осей

Пусть имеется граница раздела двух сред:

- комплексная диэлектрическая проницаемость, где

- диэлектрическая проницаемость среды,
- проводимость среды
- круговая частота волны

- магнитная проницаемость

При учете инерционности поляризации и намагничивания вводятся следующие комплексные проницаемости:

, где

- угол диэлектрических потерь
- угол магнитных потерь

- комплексное волновое число

- комплексное волновое сопротивление

Коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):

, где

- угол падения

Таким образом отраженная волна имеет вид

Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах .

На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани.

  1. Вектор(Направление луча)
  2. Вектор(Нормаль грани)
  3. Напряженность
  4. Угол
  5. КДП_1
  6. КДП_2
  7. КМП_1
  8. КМП_2