Шаблон:Распространение радиоволн ВЧ/Реализация/encompassing aperture t::unify/Алгоритм: различия между версиями

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску
Строка 13: Строка 13:
Диаметральное сечение сферы, которому принадлежат вектора <math>\vec{c}_1</math> и <math>\vec{c}_2</math>. Если <math>\vec{c'}_1\nparallel\vec{c'}_2</math>, то вектор <math>\vec{c}_{12}</math>, задающий направление на центральную точку объединяющего сектора, будет являться нормализованной суммой векторов <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>, если <math>\alpha_{12}<\frac{\pi}{2}</math> и противоположен этой сумме, если <math>\alpha_{12}>\frac{\pi}{2}</math>.|400px]]
Диаметральное сечение сферы, которому принадлежат вектора <math>\vec{c}_1</math> и <math>\vec{c}_2</math>. Если <math>\vec{c'}_1\nparallel\vec{c'}_2</math>, то вектор <math>\vec{c}_{12}</math>, задающий направление на центральную точку объединяющего сектора, будет являться нормализованной суммой векторов <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>, если <math>\alpha_{12}<\frac{\pi}{2}</math> и противоположен этой сумме, если <math>\alpha_{12}>\frac{\pi}{2}</math>.|400px]]


Пусть далее <math>\textrm{cos}\gamma=\frac{\vec{c}_1\cdot\vec{c}_2}{\left|\vec{c}_1\right|\cdot\left|\vec{c}_2\right|}</math>, где <math>\gamma</math> - угол между <math>\vec{c}_1</math> и <math>\vec{c}_2</math>.
Пусть далее <math>\cos \gamma=\frac{\vec{c}_1\cdot\vec{c}_2}{\left|\vec{c}_1\right|\cdot\left|\vec{c}_2\right|}</math>, где <math>\gamma</math> - угол между <math>\vec{c}_1</math> и <math>\vec{c}_2</math>.


Существует три случая.
Существует три случая.


[[Файл:encompassing_aperture_t_c1_par_c2.svg|thumb|
[[Файл:encompassing_aperture_t_c1_par_c2.svg|thumb|
Объединение секторов, у которых <math>\vec{c}_1\|\vec{c}_2</math>.|400px]]
Объединение секторов, у которых <math>\vec{c}_1\|\vec{c}_2</math> (''первый случай'').|400px]]


Рассмотрим '''первый случай''', когда <math>\vec{c}_1\|\vec{c}_2</math> (то есть <math>\textrm{cos}\gamma\equiv-1</math>). Поскольку длины всех векторов равны единице, <math>\vec{c}_2=-\vec{c}_1</math>, а количество плоскостей, которым одновременно могут принадлежать <math>\vec{c}_1</math> и <math>\vec{c}_2</math> бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих <math>\Omega_1</math> и <math>\Omega_2</math>, также бесконечно и зависит от того на какой из плоскостей будут принадлежать ''выбранные'' <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через <math>\vec{c}_1</math>.
Рассмотрим '''первый случай''', когда <math>\vec{c}_1\|\vec{c}_2</math> (то есть <math>\cos \gamma\equiv-1</math>). Поскольку длины всех векторов равны единице, <math>\vec{c}_2=-\vec{c}_1</math>, а количество плоскостей, которым одновременно могут принадлежать <math>\vec{c}_1</math> и <math>\vec{c}_2</math> бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих <math>\Omega_1</math> и <math>\Omega_2</math>, также бесконечно и зависит от того на какой из плоскостей будут принадлежать ''выбранные'' <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через <math>\vec{c}_1</math>.


Этот выбор можно сделать, если задать произвольный вектор <math>\vec{c}_n</math>, перпендикулярный <math>\vec{c}_1</math>.
Этот выбор можно сделать, если задать произвольный вектор <math>\vec{c}_n</math>, перпендикулярный <math>\vec{c}_1</math>.
Строка 34: Строка 34:
Для нахождения вектора <math>\vec{c'}_{12}</math> достаточно выразить его в базисе <math>\left\langle\vec{c}_1,\vec{c}_n\right\rangle</math> и осуществить переход к мировой системе координат входной модели. Как видно из рисунка, в указанном базисе вектор <math>\vec{c'}_{12}</math> имеет координаты  
Для нахождения вектора <math>\vec{c'}_{12}</math> достаточно выразить его в базисе <math>\left\langle\vec{c}_1,\vec{c}_n\right\rangle</math> и осуществить переход к мировой системе координат входной модели. Как видно из рисунка, в указанном базисе вектор <math>\vec{c'}_{12}</math> имеет координаты  
:<math>\begin{pmatrix}
:<math>\begin{pmatrix}
\left|\vec{c}_1\right|\cdot\textrm{cos}\left(\frac{\pi}{2} - \beta\right)\textrm{cos}\left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right) \\
\left|\vec{c}_1\right|\cdot\cos \left(\frac{\pi}{2} - \beta\right)\cos \left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right) \\
\left|\vec{c}_1\right|\cdot\textrm{cos}\left(\frac{\pi}{2} - \beta\right)\textrm{sin}\left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right)
\left|\vec{c}_1\right|\cdot\cos \left(\frac{\pi}{2} - \beta\right)\sin \left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right)
\end{pmatrix} = \begin{pmatrix}
\end{pmatrix} = \begin{pmatrix}
\textrm{cos}\left(\frac{\pi}{2} - \beta\right)\textrm{cos}\left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right) \\
\cos \left(\frac{\pi}{2} - \beta\right)\cos \left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right) \\
\textrm{cos}\left(\frac{\pi}{2} - \beta\right)\textrm{sin}\left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right)
\cos \left(\frac{\pi}{2} - \beta\right)\sin \left(\frac{\pi}{2}-\left(\alpha_1 + \beta\right)\right)
\end{pmatrix}</math>,
\end{pmatrix}</math>,


Строка 46: Строка 46:
:<math>\vec{c'}_{12}=\begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
:<math>\vec{c'}_{12}=\begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
\textrm{cos}\left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\textrm{cos}\left(\frac{\pi}{2}+\frac{\alpha_1 - \alpha_2}{2}\right) \\
\cos \left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\cos \left(\frac{\pi}{2}+\frac{\alpha_1 - \alpha_2}{2}\right) \\
\textrm{cos}\left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\textrm{sin}\left(\frac{\pi}{2}+\frac{\alpha_1 - \alpha_2}{2}\right)
\cos \left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\sin \left(\frac{\pi}{2}+\frac{\alpha_1 - \alpha_2}{2}\right)
\end{pmatrix} = \textrm{cos}\left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
\end{pmatrix} = \cos \left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)\begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
-\textrm{sin}\frac{\alpha_1 - \alpha_2}{2} \\
-\sin \frac{\alpha_1 - \alpha_2}{2} \\
\textrm{cos}\frac{\alpha_1 - \alpha_2}{2}
\cos \frac{\alpha_1 - \alpha_2}{2}
\end{pmatrix}</math>.
\end{pmatrix}</math>.


Пусть <math>\tau=-\textrm{cos}\left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)</math> и <math>\vec{c''}_{12} = \begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
Пусть <math>\tau=-\cos \left(\frac{\pi}{2} - \frac{\alpha_1 + \alpha_2}{2}\right)</math> и <math>\vec{c''}_{12} = \begin{pmatrix}\vec{c}_1 & \vec{c}_n\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix}
\textrm{sin}\frac{\alpha_1 - \alpha_2}{2} \\
\sin \frac{\alpha_1 - \alpha_2}{2} \\
\textrm{cos}\frac{\alpha_1 - \alpha_2}{2}
\cos \frac{\alpha_1 - \alpha_2}{2}
\end{pmatrix}</math>.
\end{pmatrix}</math>.


Строка 71: Строка 71:


[[Файл:encompassing_aperture_t_c1s_par_c2s.svg|thumb|
[[Файл:encompassing_aperture_t_c1s_par_c2s.svg|thumb|
Объединение секторов, у которых <math>\vec{c'}_1\|\vec{c'}_2</math>.|400px]]
Объединение секторов, у которых <math>\vec{c'}_1\|\vec{c'}_2</math> (''второй случай'').|400px]]
Решение задачи объединения сводится к поиску вектрра <math>\vec{c}_{12}</math>, перпендикулярного <math>\vec{c'}_1</math> (и c'2), лежащего в плоскости c1 и c2, имеющего острый угол одновременно с c1 и с c2 и нормализовонноно.
Решение задачи объединения сводится к поиску вектрра <math>\vec{c}_{12}</math>, перпендикулярного <math>\vec{c'}_1</math> (и <math>\vec{c'}_2</math>), лежащего в плоскости <math>\vec{c}_1</math> и <math>\vec{c}_2</math>, имеющего острый угол одновременно с <math>\vec{c}_1</math> и с <math>\vec{c}_2</math> и нормализованного.


Поскольку вектора c1 и c2 линейно-независимы, их можно использовать в качестве базиса для поиска вектора, сонаправленного с c12', следующим образом.
Поскольку вектора <math>\vec{c}_1</math> и <math>\vec{c}_2</math> линейно-независимы, их можно использовать в качестве базиса для поиска вектора, сонаправленного с <math>\vec{c}_{12}</math>, следующим образом.
 
Опустим перпендикуляр от конца одного из векторов, например <math>\vec{c}_1</math>, на вектор <math>\vec{c}_{12}</math>, перперндикулярный <math>\vec{c'}_1</math> и образующий острый угол с <math>\vec{c}_1</math>. Обозначим вектор, связанный с направленным отрезком, который исходит от центра сферы к точке пересечения <math>\vec{c}_{12}</math> и проведенного перпендикуляра, как <math>\vec{c'}_{12}</math>. Такой вектор очевидно будет сонаправлен с <math>\vec{c}_{12}</math>, а его длина будет равна
:<math>\left|\vec{c'}_{12}\right|=\left|\vec{c}_1\right|\sin \alpha_1=\sin \alpha_1</math>;
:<math>\vec{c}_{12} = \tau\vec{c'}_{12}</math>.
 
Обозначим как <math>\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,x}</math> и <math>\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,y}</math> соответственно проекции вектора <math>\vec{c'}_{12}</math> на <math>\vec{c}_1</math> и <math>\vec{c}_2</math> а равно координаты вектора <math>\vec{c'}_{12}</math> в базисе <math>\left\langle\vec{c}_1,\vec{c}_2\right\rangle</math>. Из теоремы синусов следует, что
:<math>\frac{\sin \left(\alpha_1+\alpha_2\right)}{\left|\vec{c'}_{12}\right|}=
\frac{\sin \left(\alpha_1+\alpha_2\right)}{\sin \alpha_1}=
\frac{\sin \left(\frac{\pi}{2} - \alpha_2\right)}{\left|\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,x}\right|}=
\frac{\cos \alpha_2}{\left|\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,x}\right|}=
\frac{\sin \left(\frac{\pi}{2} - \alpha_1\right)}{\left|\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,y}\right|}=
\frac{\cos \alpha_1}{\left|\vec{c'}_{12,\left\langle\vec{c}_1,\vec{c}_2\right\rangle,y}\right|}</math>.
 
Тогда в базисе <math>\left\langle\vec{c}_1,\vec{c}_2\right\rangle</math> вектор <math>\vec{c'}_{12}</math> будет равен:
:<math>\vec{c'}_{12}=\frac{\sin \alpha_1}{\sin \left(\alpha_1+\alpha_2\right)}\begin{pmatrix}\vec{c}_1 & \vec{c}_2\end{pmatrix}
\begin{pmatrix}
\cos\alpha_2 \\
\cos\alpha_1
\end{pmatrix}</math>.

Версия 16:57, 1 декабря 2018

Пусть объединяются два сектора сферы, релизуемые классом классом encompassing_aperture_t - и , где - вектор направления на центральную точку -го сектора (возвращаемый методом encompassing_aperture_t::central_point), а - соответствующий ангулярный радиус (возвращаемый методом encompassing_aperture_t::radius).

В результате объединения создается новый сектор .

Вектора могут быть либо нулевыми либо единичными. Сектор с нулевым вектором направления считается нейтральным по операции объединения, т.е. .

Далее рассматривается случай, в котором .

Поскольку направленные отрезки и исходят из одной точки - центра сферы, оба отрезка принадлежат одной плоскости, причем эта плоскость является диаметральным сечением сферы. Поэтому задача поиска объединяющего сектора, то есть вектора и ангулярного радиуса , становится двумерной.

Диаметральное сечение сферы, которому принадлежат вектора и . Если , то вектор , задающий направление на центральную точку объединяющего сектора, будет являться нормализованной суммой векторов и , если и противоположен этой сумме, если .

Пусть далее , где - угол между и .

Существует три случая.

Объединение секторов, у которых (первый случай).

Рассмотрим первый случай, когда (то есть ). Поскольку длины всех векторов равны единице, , а количество плоскостей, которым одновременно могут принадлежать и бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих и , также бесконечно и зависит от того на какой из плоскостей будут принадлежать выбранные и ; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через .

Этот выбор можно сделать, если задать произвольный вектор , перпендикулярный .

В описываемой реализации

.

Тогда на плоскости, которой одновременно принадлежат , и , будет однозначно определен вектор , отстоящий на одинаковом угловом расстоянии от векторов и и, поэтому, параллельный вектору центральной точки сектора-объединения.

Для нахождения вектора достаточно выразить его в базисе и осуществить переход к мировой системе координат входной модели. Как видно из рисунка, в указанном базисе вектор имеет координаты

,

причем .

Тогда в мировых координатах

.

Пусть и .

Тогда .

Отсюда

,

а ангулярный радиус будет равен

.

Во втором случае , однако (то есть ).

Объединение секторов, у которых (второй случай).

Решение задачи объединения сводится к поиску вектрра , перпендикулярного ), лежащего в плоскости и , имеющего острый угол одновременно с и с и нормализованного.

Поскольку вектора и линейно-независимы, их можно использовать в качестве базиса для поиска вектора, сонаправленного с , следующим образом.

Опустим перпендикуляр от конца одного из векторов, например , на вектор , перперндикулярный и образующий острый угол с . Обозначим вектор, связанный с направленным отрезком, который исходит от центра сферы к точке пересечения и проведенного перпендикуляра, как . Такой вектор очевидно будет сонаправлен с , а его длина будет равна

;
.

Обозначим как и соответственно проекции вектора на и а равно координаты вектора в базисе . Из теоремы синусов следует, что

.

Тогда в базисе вектор будет равен:

.