Шаблон:Распространение радиоволн ВЧ/Реализация/encompassing aperture t::unify/Алгоритм: различия между версиями
Строка 12: | Строка 12: | ||
[[Файл:encompassing_aperture_t_unify.svg|thumb| | [[Файл:encompassing_aperture_t_unify.svg|thumb| | ||
Диаметральное сечение сферы, которому принадлежат вектора <math>\vec{c}_1</math> и <math>\vec{c}_2</math>. Если <math>\vec{c'}_1\nparallel\vec{c'}_2</math>, то вектор <math>\vec{c}_{12}</math>, задающий направление на центральную точку объединяющего сектора, будет являться нормализованной суммой векторов <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>, если <math>\alpha_{12}<\frac{\pi}{2}</math> и противоположен этой сумме, если <math>\alpha_{12}>\frac{\pi}{2}</math>.|400px]] | Диаметральное сечение сферы, которому принадлежат вектора <math>\vec{c}_1</math> и <math>\vec{c}_2</math>. Если <math>\vec{c'}_1\nparallel\vec{c'}_2</math>, то вектор <math>\vec{c}_{12}</math>, задающий направление на центральную точку объединяющего сектора, будет являться нормализованной суммой векторов <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>, если <math>\alpha_{12}<\frac{\pi}{2}</math> и противоположен этой сумме, если <math>\alpha_{12}>\frac{\pi}{2}</math>.|400px]] | ||
Пусть далее <math>\textrm{cos}\gamma=\frac{\vec{c}_1\cdot\vec{c}_2}{\left|\vec{c}_1\right|\cdot\left|\vec{c}_2\right|}</math>, где <math>\gamma</math> - угол между <math>\vec{c}_1</math> и <math>\vec{c}_2</math>. | |||
Существует три случая. | Существует три случая. | ||
Строка 18: | Строка 20: | ||
Объединение секторов, у которых <math>\vec{c}_1\|\vec{c}_2</math>.|400px]] | Объединение секторов, у которых <math>\vec{c}_1\|\vec{c}_2</math>.|400px]] | ||
Рассмотрим '''первый случай''', когда <math>\vec{c}_1\|\vec{c}_2</math>. Поскольку длины всех векторов равны единице, <math>\vec{c}_2=-\vec{c}_1</math>, а количество плоскостей, которым одновременно могут принадлежать <math>\vec{c}_1</math> и <math>\vec{c}_2</math> бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих <math>\Omega_1</math> и <math>\Omega_2</math>, также бесконечно и зависит от того на какой из плоскостей будут принадлежать ''выбранные'' <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через <math>\vec{c}_1</math>. | Рассмотрим '''первый случай''', когда <math>\vec{c}_1\|\vec{c}_2</math> (то есть <math>\textrm{cos}\gamma\equiv-1</math>). Поскольку длины всех векторов равны единице, <math>\vec{c}_2=-\vec{c}_1</math>, а количество плоскостей, которым одновременно могут принадлежать <math>\vec{c}_1</math> и <math>\vec{c}_2</math> бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих <math>\Omega_1</math> и <math>\Omega_2</math>, также бесконечно и зависит от того на какой из плоскостей будут принадлежать ''выбранные'' <math>\vec{c'}_1</math> и <math>\vec{c'}_2</math>; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через <math>\vec{c}_1</math>. | ||
Этот выбор можно сделать, если задать произвольный вектор <math>\vec{c}_n</math>, перпендикулярный <math>\vec{c}_1</math>. | Этот выбор можно сделать, если задать произвольный вектор <math>\vec{c}_n</math>, перпендикулярный <math>\vec{c}_1</math>. | ||
Строка 66: | Строка 68: | ||
:<math>\alpha_{12}=\pi - \beta = \frac{\pi + \alpha_1 + \alpha_2}{2}</math>. | :<math>\alpha_{12}=\pi - \beta = \frac{\pi + \alpha_1 + \alpha_2}{2}</math>. | ||
Во '''втором случае''' <math>\vec{c}_1\nparallel | Во '''втором случае''' <math>\vec{c}_1\nparallel\vec{c}_2</math>, однако <math>\vec{c'}_1\|\vec{c'}_2</math> (то есть <math>\alpha_1 + \gamma + \alpha_2 \equiv \pi</math>). |
Версия 01:36, 30 ноября 2018
Пусть объединяются два сектора сферы, релизуемые классом классом encompassing_aperture_t - и , где - вектор направления на центральную точку -го сектора (возвращаемый методом encompassing_aperture_t::central_point), а - соответствующий ангулярный радиус (возвращаемый методом encompassing_aperture_t::radius).

В результате объединения создается новый сектор
.Вектора
могут быть либо нулевыми либо единичными. Сектор с нулевым вектором направления считается нейтральным по операции объединения, т.е. .Далее рассматривается случай, в котором
.Поскольку направленные отрезки
и исходят из одной точки - центра сферы, оба отрезка принадлежат одной плоскости, причем эта плоскость является диаметральным сечением сферы. Поэтому задача поиска объединяющего сектора, то есть вектора и ангулярного радиуса , становится двумерной.Пусть далее
, где - угол между и .Существует три случая.
Рассмотрим первый случай, когда
(то есть ). Поскольку длины всех векторов равны единице, , а количество плоскостей, которым одновременно могут принадлежать и бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих и , также бесконечно и зависит от того на какой из плоскостей будут принадлежать выбранные и ; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через .Этот выбор можно сделать, если задать произвольный вектор
, перпендикулярный .В описываемой реализации
- .
Тогда на плоскости, которой одновременно принадлежат
, и , будет однозначно определен вектор , отстоящий на одинаковом угловом расстоянии от векторов и и, поэтому, параллельный вектору центральной точки сектора-объединения.Для нахождения вектора
достаточно выразить его в базисе и осуществить переход к мировой системе координат входной модели. Как видно из рисунка, в указанном базисе вектор имеет координаты- ,
причем
.Тогда в мировых координатах
- .
Пусть
и .Тогда
.Отсюда
- ,
а ангулярный радиус будет равен
- .
Во втором случае
, однако (то есть ).