Распространение радиоволн ВЧ/Напряженность: различия между версиями

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску
Строка 8: Строка 8:


В результате распространения излученного элемента волны на расстояние <math>r_1</math> напряженность поля падает в <math>r_1 e^{ikr_1}</math> раз, становясь равной
В результате распространения излученного элемента волны на расстояние <math>r_1</math> напряженность поля падает в <math>r_1 e^{ikr_1}</math> раз, становясь равной
:<math>\vec{\dot E}\left(r_1\right)=\vec{\dot E_0}r_0 y_1 = \vec{\dot E_0}\frac{r_0}{r_1}e^{-ikr_1}</math>, где:
:<math>\vec{\dot E}\left(r_1\right)=\vec{\dot E_0}r_0 y_1 \left(r_1\right) = \vec{\dot E_0}\frac{r_0}{r_1}e^{-ikr_1}</math>, где:
* <math>y_1 = \frac{1}{R_1}=\frac{1}{r_1}e^{-ikr_1}</math> - скалярный коэффициент падения амплитуды напряженности при распространении волнового элемента в связи со сферическим расхождением волны,
* <math>y_1 \left(r_1\right) = \frac{1}{r_1}e^{-ikr_1}</math> - скалярный коэффициент падения амплитуды напряженности при распространении волнового элемента в связи со сферическим расхождением волны,
* <math>\dot k = \omega \sqrt{\dot \varepsilon \dot \mu}</math> - комплексное волновое число
* <math>\dot k = \omega \sqrt{\dot \varepsilon \dot \mu}</math> - комплексное волновое число
** <math>\dot \varepsilon = \varepsilon' - i \varepsilon''</math>
** <math>\dot \varepsilon = \varepsilon' - i \varepsilon''</math>
Строка 26: Строка 26:


Тогда, в результате распространения волнового элемента на расстояние <math>r_1 + r_2</math> от источника в одной и той же изотропной среде, результирующая напряженность станет равной
Тогда, в результате распространения волнового элемента на расстояние <math>r_1 + r_2</math> от источника в одной и той же изотропной среде, результирующая напряженность станет равной
:<math>\vec{\dot E}\left(r_1 + r_2\right) = \vec{\dot E_0}r_0 y_{1,2}=\vec{\dot E_0}r_0 y'_1\left(r_1, r_2\right)y'_2\left(r_1, r_2\right)</math>,
:<math>\vec{\dot E}\left(r_1, r_2\right) = \vec{\dot E_0}r_0 y\left(r_1, r_2\right)=\vec{\dot E_0}r_0 y_1\left(r_1, r_2\right)\left(r_1, r_2\right)y_2\left(r_1, r_2\right)</math>,
где <math>y'_1\left(r_1, r_2\right) = \frac{r_1 r_2}{r_1 + r_2}\frac{e^{-ikr_1}}{r_1}</math> и <math>y'_2\left(r_1, r_2\right) = \frac{r_1 r_2}{r_1 + r_2}\frac{e^{-ikr_2}}{r_2}</math>.
где <math>y_1\left(r_1, r_2\right) = \left(\frac{r_1 r_2}{r_1 + r_2}\right)^{\frac{1}{2}}\frac{e^{-ikr_1}}{r_1}</math>, <math>y'_2\left(r_1, r_2\right) = \left(\frac{r_1 r_2}{r_1 + r_2}\right)^{\frac{1}{2}}\frac{e^{-ikr_2}}{r_2}</math> и <math>y\left(r_1, r_2\right) = y_1\left(r_1, r_2\right)y_2\left(r_1, r_2\right)=\left(\frac{r_1 r_2}{r_1 + r_2}\right)^{\frac{2}{2}}\frac{e^{-ikr_1}e^{-ikr_2}}{r_1 r_2} = \frac{e^{-ik\left(r_1 + r_2\right)}}{r_1 + r_2}</math>.
Тогда <math>y'_1\left(r_1, r_2\right)y'_2\left(r_1, r_2\right) = </math>
 
=\vec{\dot E_0}\frac{r_0}{r_1 + r_2}e^{-ik\left(r_1 + r_2\right)}</math>.
В более общем случае
Или в более общем случае
:<math>\vec{\dot E}\left(r_1, \dots, r_n\right) = \vec{\dot E_0}r_0 y\left(r_1, \dots, r_n\right)=\vec{\dot E_0}r_0\prod_{j=1}^{n}y_j\left(r_1, \dots, r_n\right)=
:<math>\vec{\dot E}\left(\sum r_i\right) = \vec{\dot E_0}r_0 y_{\Pi}=\vec{\dot E_0}\frac{r_0}{\sum r_i}e^{-ik\left(\sum r_i\right)}</math>.
\vec{\dot E_0}\frac{r_0}{\sum_{i=1}^{n} r_i}e^{-i\left(\sum_{i=1}^{n} k_i r_i\right)}</math>,
Здесь коэффициент <math>y_{\sum}</math> по-прежнему является скалярным значением.
где <math>y_j\left(r_1, \dots, r_n\right) = \left(\frac{\prod_{j'=1}^{n}r_{j'}}{\sum_{j'=1}^{n}r_{j'}}\right)^\frac{1}{n}\frac{e^{-ik_jr_j}}{r_j}</math>.


=Модель отражения=
=Модель отражения=

Версия 19:50, 23 сентября 2018

Трехкомпонентный комплексный вектор который задается волновым элементом, порождаемым источником , в результате распространения и отражений в среде.

Вектор рассчитывается путем вычисления результирующих потерь при отражениях и распространении от источника следующим образом.

Модель распространения

Пусть - дальняя зона, расстояние, на котором для источника снята начальная напряженность .

В результате распространения излученного элемента волны на расстояние напряженность поля падает в раз, становясь равной

, где:
  • - скалярный коэффициент падения амплитуды напряженности при распространении волнового элемента в связи со сферическим расхождением волны,
  • - комплексное волновое число

Таким образом .

Здесь первая экспонента является коэффициентом поглощения среды на расстоянии , а

- погонным затуханием среды [дБ/м]

В частности, при отсутствии инерционности поляризации и намагничивания  :

.

Тогда, в результате распространения волнового элемента на расстояние от источника в одной и той же изотропной среде, результирующая напряженность станет равной

,

где , и .

В более общем случае

,

где .

Модель отражения

Пусть электрическая напряженность волнового элемента, падающего на плоскую поверхность с нормалью , задается некоторым комплексным вектором . Пусть эта поверхность является границей раздела двух сред: - среды, в которой распространяется падающая волна, задаваемой четверкой параметров и - среды, на границу которой падает волна, задаваемой четверкой параметров .

Перпендикулярная поляризация
Параллельная поляризация
Поворот координатных осей

Здесь:

  • - комплексная диэлектрическая проницаемость, где
    • - диэлектрическая проницаемость среды,
    • - проводимость среды,
    • - круговая частота волны,
    • - угол диэлектрических потерь;
  • - комплексная магнитная проницаемость, где
    • - магнитная проницаемость среды,
    • - угол магнитных потерь;
  • - комплексное волновое число;
  • - комплексное волновое сопротивление.

Тогда коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):

,

, где - угол падения.

Таким образом отраженная волна имеет вид


Функции

Изменить по пробегу(Напряженность, Пробег, Комплексное волновое число)

При распространении радиоволны в свободном пространстве происходит изменение ее фазы и амплитуды. Амплитуда уменьшается вследствии сферической расходимости волны, а также при распространении в поглощающих средах - вследствии поглощения в среде.

, где

- напряженность в начальной точке
- пройденное расстояние
- комплексное волновое число

Как видно из формулы первая экспонента является коэффициентом поглощения среды на расстоянии r, а

- погонным затуханием среды [дБ/м]

В частности, при отсутствии инерционности поляризации и намагничивания  :

На вход функции принимается трехкомпонентный комплексный вектор напряженности, расстояние пробега волны и комплексное волновое число. На выходе получаем трехкомпонентный комплексный вектор напряженности, прошедший заданное расстояние.

  1. Напряженность
  2. Пробег
  3. Комплексное волновое число

Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))

* - комплексная диэлектрическая проницаемость, ** - комплексная магнитная проницаемость.

Перпендикулярная поляризация
Параллельная поляризация
Поворот координатных осей

Пусть имеется граница раздела двух сред:

- комплексная диэлектрическая проницаемость, где

- диэлектрическая проницаемость среды,
- проводимость среды
- круговая частота волны

- магнитная проницаемость

При учете инерционности поляризации и намагничивания вводятся следующие комплексные проницаемости:

, где

- угол диэлектрических потерь
- угол магнитных потерь

- комплексное волновое число

- комплексное волновое сопротивление

Коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):

, где

- угол падения

Таким образом отраженная волна имеет вид

Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах .

На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани. На выходе получаем трехкомпонентный вектор отраженной напряженности в глобальных координатах.

  1. Вектор(Направление луча)
  2. Вектор(Нормаль грани)
  3. Напряженность
  4. Угол
  5. КДП_1
  6. КДП_2
  7. КМП_1
  8. КМП_2