Распространение радиоволн ВЧ/Напряженность: различия между версиями
Nigiluk (обсуждение | вклад) |
Nigiluk (обсуждение | вклад) |
||
Строка 45: | Строка 45: | ||
Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>. | Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах <math>E_x=E_{\bot},~E_y=E_{\|},~E_z=0</math>. | ||
На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани. | На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани. На выходе получаем трехкомпонентный вектор отраженной напряженности в глобальных координатах. | ||
#<math>V\leftarrow</math> <tt>Вектор(Направление луча)</tt> | #<math>V\leftarrow</math> <tt>Вектор(Направление луча)</tt> | ||
Строка 55: | Строка 55: | ||
#<math>\mu_1 \leftarrow</math> <tt>КМП_1</tt> | #<math>\mu_1 \leftarrow</math> <tt>КМП_1</tt> | ||
#<math>\mu_2 \leftarrow</math> <tt>КМП_2</tt> | #<math>\mu_2 \leftarrow</math> <tt>КМП_2</tt> | ||
#<math>K \leftarrow N \times V</math> | #<math>K \leftarrow N \times V</math> | ||
#<math> | #<math>E \leftarrow \begin{bmatrix} E(1) & E(2) & E(3) \end{bmatrix} \begin{bmatrix} \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} \\ 0 & 1 & 0 \\ -\frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \\ 0 & -\frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \end{bmatrix} \begin{bmatrix} \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & -\frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ \frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}</math> | ||
#<math>E(1) \leftarrow \frac {\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \varphi - \sqrt{\frac{\mu_1}{\varepsilon_1}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi}} {\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \varphi + \sqrt{\frac{\mu_1}{\varepsilon_1}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi}}E(1)</math> | #<math>E(1) \leftarrow \frac {\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \varphi - \sqrt{\frac{\mu_1}{\varepsilon_1}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi}} {\sqrt{\frac{\mu_2}{\varepsilon_2}} \cos \varphi + \sqrt{\frac{\mu_1}{\varepsilon_1}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi}}E(1)</math> | ||
#<math>E(2) \leftarrow \frac {\sqrt{\frac{\mu_2}{\varepsilon_2}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi} - \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \varphi} {\sqrt{\frac{\mu_2}{\varepsilon_2}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi} + \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \varphi}E(2)</math> | #<math>E(2) \leftarrow \frac {\sqrt{\frac{\mu_2}{\varepsilon_2}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi} - \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \varphi} {\sqrt{\frac{\mu_2}{\varepsilon_2}} \sqrt{ 1 - \frac {\mu_1 \varepsilon_1} {\mu_2 \varepsilon_2} \sin^2 \varphi} + \sqrt{\frac{\mu_1}{\varepsilon_1}} \cos \varphi}E(2)</math> | ||
#<math> | #<math>E \leftarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos (180 - 2 \varphi) & \sin (180 - 2 \varphi) \\ 0 & -\sin (180 - 2 \varphi) & \cos (180 - 2 \varphi) \end{bmatrix} \begin{bmatrix} E(1) \\ E(2) \\ E(3) \end{bmatrix}</math> | ||
#<math>E \leftarrow \begin{bmatrix} E(1) & E(2) & E(3) \end{bmatrix} \begin{bmatrix} \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & \frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ -\frac {K(2)} {\sqrt {K(1)^2+K(2)^2}} & \frac {K(1)} {\sqrt {K(1)^2+K(2)^2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & -\frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \\ 0 & \frac {V(2)} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} & \frac {\sqrt {V(1)^2+V(3)^2}} {\sqrt {V(1)^2+V(2)^2+V(3)^2}} \end{bmatrix} \begin{bmatrix} \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} & 0 & -\frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} \\ 0 & 1 & 0 \\ \frac {V(1)} {\sqrt {V(1)^2+V(3)^2}} & 0 & \frac {V(3)} {\sqrt {V(1)^2+V(3)^2}} \end{bmatrix}</math> | |||
Версия 02:35, 27 мая 2017
Трехкомпонентный комплексный вектор
Функции
Уменьшить по пробегу(Напряженность, Пробег, Погонное затухание)
Изменить по отражению(Напряженность, КДП_1*, КМП_1**, КДП_2, КМП_2, Угол, Вектор(Направление луча), Вектор(Нормаль грани))
* - комплексная диэлектрическая проницаемость, ** - комплексная магнитная проницаемость.
Пусть имеется граница раздела двух сред:
- комплексная диэлектрическая проницаемость, где
- - диэлектрическая проницаемость среды,
- - проводимость среды
- - круговая частота волны
- магнитная проницаемость
При учете инерционности поляризации и намагничивания вводятся следующие комплексные проницаемости:
, где
- - угол диэлектрических потерь
- - угол магнитных потерь
- комплексное волновое число
- комплексное волновое сопротивление
Коэффициенты отражения для перпендикулярной и параллельной поляризации имеют следующий вид (формулы Френеля):
, где
- - угол падения
Таким образом отраженная волна имеет вид
Т.к. напряженность поля дана в виде трехкомпонентного вектора относительно глобальной системы координат, необходимо найти параллельную и перпендикулярную составляющие соответственно данной грани и падающему лучу. Для этого составим матрицы поворота координатных осей таким образом, чтобы ось z совпала с направляющим вектором луча, а ось x с вектором векторного произведения направляющего вектора луча и вектора нормали грани. В результате в новых координатах
.На вход функции подается трехкомпонентный комплексный вектор напряженности, комплексные диэлектрические и магнитные проницаемости обоих сред, причем первыми даются характеристики среды из которой пришел луч. Также на вход функции поступает угол падения, направляющий вектор луча и вектор нормали грани. На выходе получаем трехкомпонентный вектор отраженной напряженности в глобальных координатах.
- Вектор(Направление луча)
- Вектор(Нормаль грани)
- Напряженность
- Угол
- КДП_1
- КДП_2
- КМП_1
- КМП_2