Распространение радиоволн ВЧ/Рей-трейсинг: различия между версиями
Nigiluk (обсуждение | вклад) |
Nigiluk (обсуждение | вклад) |
||
| Строка 58: | Строка 58: | ||
########<math>\forall ~ t_m \in f</math><tt>.Множество отражающих поверхностей()</tt> | ########<math>\forall ~ t_m \in f</math><tt>.Множество отражающих поверхностей()</tt> | ||
#########<tt><math>t'\leftarrow t_m:~\min (</math>Расстояние(Position, Координаты[Ray <math>\cap ~t_m</math>])<math>)</math></tt> | #########<tt><math>t'\leftarrow t_m:~\min (</math>Расстояние(Position, Координаты[Ray <math>\cap ~t_m</math>])<math>)</math></tt> | ||
#######Distance <math>\leftarrow</math><tt> Расстояние(Position, Координаты[Ray <math>\cap ~t'</math>])</tt> | |||
#######<math>\forall ~ \rho_k \in</math><tt> [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Множество контрольных точек|Множество контрольных точек()]]</tt> | #######<math>\forall ~ \rho_k \in</math><tt> [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Множество контрольных точек|Множество контрольных точек()]]</tt> | ||
########Если <math>\rho_k \in </math><tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Область регистрации луча <math>(\alpha_{\theta},~\alpha_{\varphi},~\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},~\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},</math> | ########Если <math>\rho_k \in </math><tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Область регистрации луча <math>(\alpha_{\theta},~\alpha_{\varphi},~\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},~\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},</math> Distance<math>)</math></tt> | ||
#########<tt><math>\rho_k</math>.Зарегистрировать([[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Напряженность<math>(\omega_n,~\alpha_{\theta},~\alpha_{\varphi}</math>, Расстояние(Position, <math>\rho_k</math>.Позиция()), [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Среда распространения|Среда распространения()]]<math>)</math>)</tt> | #########<tt><math>\rho_k</math>.Зарегистрировать([[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Напряженность<math>(\omega_n,~\alpha_{\theta},~\alpha_{\varphi}</math>, Расстояние(Position, <math>\rho_k</math>.Позиция()), [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Среда распространения|Среда распространения()]]<math>)</math>)</tt> | ||
#######Если <tt>[[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Напряженность<math>(\omega_n,~\alpha_{\theta},~\alpha_{\varphi}</math>, Расстояние(Position, Координаты[Ray <math>\cap ~t'</math>]), [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Среда распространения|Среда распространения()]]</tt><math>)>E_{end}</math> | #######Если <tt>[[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].Напряженность<math>(\omega_n,~\alpha_{\theta},~\alpha_{\varphi}</math>, Расстояние(Position, Координаты[Ray <math>\cap ~t'</math>]), [[Распространение радиоволн ВЧ/Геометрическая модель|G]].[[Распространение радиоволн ВЧ/Среда распространения|Среда распространения()]]</tt><math>)>E_{end}</math> | ||
| Строка 65: | Строка 66: | ||
########<math>S \leftarrow S \cup s'</math> | ########<math>S \leftarrow S \cup s'</math> | ||
#Переход на шаг 2 | #Переход на шаг 2 | ||
===Свойства алгоритма=== | ===Свойства алгоритма=== | ||
====Сложность==== | ====Сложность==== | ||
Версия 18:34, 4 ноября 2016
Алгоритм
Идея последовательного приближения
Идея заключается в последовательном удвоении числа элементарных модельных экспериментов. Это продолжится до тех пор, пока результат текущего моделирования не приблизится к результату моделирования на предыдущей итерации:
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \left | F_i-F_{i-1} \right |<\Delta , где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \Delta - параметр моделирования, задаваемый пользователем.
Однако сравнение соседних итераций не дает достаточного условия на достижение заданной точности (основная причина этого - излучение по направлениям). Поэтому правильнее будет сравнивать итерации через одну, две и т.д.:
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \left | F_i-F_{i-k} \right |<\Delta , где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): k также будет задаваться пользователем.
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i здесь - это параметр цикла, стоящего над циклами основной программы, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=\overline{0:N} .
При равномерном увеличении числа направлений излучения от первичного источника в два раза путем деления на 2 соответствующего шага по углу в процессе увеличения Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i , только каждое второе направление будет новым, т.е. не учитанным на предыдущих итерациях. Другая половина будет повторять эксперименты, уже выполненные ранее. Поэтому в цикл основной программы введено дополнительное условие для учета этих повторений.
Шаги Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \Delta_{\theta}\left(\theta\right) по азимуту и Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \Delta_{\varphi}\left(\varphi\right) по зениту источника являются функциями от направления либо постоянными.
Угловой шаг дискретизации как функция ХН
Большинство современных вещательных систем используют панельные антенны с ограниченными углами раствора диаграммы направленности (ДН) в горизонтальной плоскости (до 120°) и очень малыми углами в вертикальной плоскости (до 20°). Соответственно, в таких системах происходит серьезное перераспределение излучаемой энергии в пространстве. Типичные коэффициенты усиления: 16-18 dBi. Поэтому одним из решений задачи оптимизации является использование динамического углового шага дискретизации Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \Delta_{\theta},~\Delta_{\varphi} как функции от характеристики направленности источника.
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_0 \varphi + k F'(\varphi) , где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_0 - начальная частота дискретизации;
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): F - функция ХН;
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - азимутальный угол;
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): k - коэффициент девиации.
Инициализация геометрической модели
Перерасчет высот с учетом кривизны земли и рефракции радиоволн в тропосфере.
Входной параметр Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h пересчитывается в соответствии с формулой:
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h'(x,y) = h(x,y)-\frac{-2 R_{eq}+\sqrt{(2 R_{eq})^{2}+4 r^{2}}}{2} \approx h(x,y)-\frac{r^{2}}{2 R_{eq}} , где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_{eq}=\frac{R_0}{1+R_0 \frac{dn}{dh}}
- эквивалентный радиус Земли, где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_0=6371 - радиус Земли (км),
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \frac{dn}{dh}=grad~n - изменение коэффициента преломления с высотой.
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r=\sqrt{x^{2}+y^{2}} - расстояние до точки с высотой Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h(x,y) .
Основной цикл программы | Вариант 1
Предусловия
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): G - входное описание среды распространения моделируемого поля, заданное геометрической моделью.
Основное течение
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow G.Набор источников()
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S: \varnothing то ВЫХОД
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ s_j \in S
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow S~ \backslash \left \{ s_j \right \}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \omega_n \in
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j
().Антенна().Тип антенны().Амплитудно-частотная характеристика()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\theta} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}
- Position Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow ().Антенна().Позиция()
- Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Создать луч(Position, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},~\alpha_{\varphi} )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ f\in
G.Множество отражающих объектов()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ t_m \in f
.Множество отражающих поверхностей()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t'\leftarrow t_m:~\min ( Расстояние(Position, Координаты[Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t_m ])Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ t_m \in f
.Множество отражающих поверхностей()
- Distance Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Расстояние(Position, Координаты[Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ])
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \rho_k \in
G.Множество контрольных точек()
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k \in
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j
().Область регистрации луча Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (\alpha_{\theta},~\alpha_{\varphi},~\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},~\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},
DistanceНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k .Зарегистрировать(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().НапряженностьНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (\omega_n,~\alpha_{\theta},~\alpha_{\varphi} , Расстояние(Position, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k .Позиция()), G.Среда распространения()Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): ) )
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k \in
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j
().Область регистрации луча Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (\alpha_{\theta},~\alpha_{\varphi},~\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},~\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},
DistanceНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j
().НапряженностьНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (\omega_n,~\alpha_{\theta},~\alpha_{\varphi}
, Расстояние(Position, Координаты[Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t'
]), G.Среда распространения()Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )>E_{end}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s' \leftarrow Вторичный источник при рейтрейсинге.Создать(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().НапряженностьНевозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): (\omega_n,~\alpha_{\theta},~\alpha_{\varphi} , Расстояние(Position, Координаты[Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ]), G.Среда распространения())Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): ),~\alpha_{\theta},~\alpha_{\varphi}, Position, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t' )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow S \cup s'
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\theta} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]
- Переход на шаг 2