Шаблон:Распространение радиоволн ВЧ/Реализация/encompassing aperture t::unify/Алгоритм: различия между версиями
Строка 94: | Строка 94: | ||
\cos\alpha_1 | \cos\alpha_1 | ||
\end{pmatrix}</math>. | \end{pmatrix}</math>. | ||
Пусть <math>\tau'=\frac{\sin \left(\alpha_1+\alpha_2\right)}{\sin \alpha_1}</math>, и <math>\vec{c''}_{12}=\tau'\vec{c'}_{12}=\begin{pmatrix}\vec{c}_1 & \vec{c}_2\end{pmatrix} | |||
\begin{pmatrix} | |||
\cos\alpha_2 \\ | |||
\cos\alpha_1 | |||
\end{pmatrix}</math>. | |||
Таким образом, во втором случае <math>\vec{c}_{12}=\frac{\tau'\vec{c''}_{12}}{\left|\tau'\vec{c''}_{12}\right|}=\frac{\vec{c''}_{12}}{\left|\vec{c''}_{12}\right|}</math>, | |||
<math>\alpha_{12}=\frac{\pi}{2}</math>. |
Версия 17:14, 1 декабря 2018
Пусть объединяются два сектора сферы, релизуемые классом классом encompassing_aperture_t - и , где - вектор направления на центральную точку -го сектора (возвращаемый методом encompassing_aperture_t::central_point), а - соответствующий ангулярный радиус (возвращаемый методом encompassing_aperture_t::radius).

В результате объединения создается новый сектор
.Вектора
могут быть либо нулевыми либо единичными. Сектор с нулевым вектором направления считается нейтральным по операции объединения, т.е. .Далее рассматривается случай, в котором
.Поскольку направленные отрезки
и исходят из одной точки - центра сферы, оба отрезка принадлежат одной плоскости, причем эта плоскость является диаметральным сечением сферы. Поэтому задача поиска объединяющего сектора, то есть вектора и ангулярного радиуса , становится двумерной.Пусть далее
, где - угол между и .Существует три случая.
Рассмотрим первый случай, когда
(то есть ). Поскольку длины всех векторов равны единице, , а количество плоскостей, которым одновременно могут принадлежать и бесконечно, вследствие чего количество возможных секторов минимальной площади, объединяющих и , также бесконечно и зависит от того на какой из плоскостей будут принадлежать выбранные и ; и этот выбор будет сводится к выбору диаметральной плоскости, проходящей через .Этот выбор можно сделать, если задать произвольный вектор
, перпендикулярный .В описываемой реализации
- .
Тогда на плоскости, которой одновременно принадлежат
, и , будет однозначно определен вектор , отстоящий на одинаковом угловом расстоянии от векторов и и, поэтому, параллельный вектору центральной точки сектора-объединения.Для нахождения вектора
достаточно выразить его в базисе и осуществить переход к мировой системе координат входной модели. Как видно из рисунка, в указанном базисе вектор имеет координаты- ,
причем
.Тогда в мировых координатах
- .
Пусть
и .Тогда
.Отсюда
- ,
а ангулярный радиус будет равен
- .
Во втором случае
, однако (то есть ).Решение задачи объединения сводится к поиску вектрра
, перпендикулярного (и ), лежащего в плоскости и , имеющего острый угол одновременно с и с и нормализованного.Поскольку вектора
и линейно-независимы, их можно использовать в качестве базиса для поиска вектора, сонаправленного с , следующим образом.Опустим перпендикуляр от конца одного из векторов, например
, на вектор , перперндикулярный и образующий острый угол с . Обозначим вектор, связанный с направленным отрезком, который исходит от центра сферы к точке пересечения и проведенного перпендикуляра, как . Такой вектор очевидно будет сонаправлен с , а его длина будет равна- ;
- .
Обозначим как
и соответственно проекции вектора на и а равно координаты вектора в базисе . Из теоремы синусов следует, что- .
Тогда в базисе
вектор будет равен:- .
Пусть
, и .Таким образом, во втором случае
, .