Распространение радиоволн ВЧ/Рей-трейсинг: различия между версиями
Nigiluk (обсуждение | вклад) |
Nigiluk (обсуждение | вклад) |
||
| Строка 48: | Строка 48: | ||
##<math>\forall ~ \omega_n \in \Omega</math> | ##<math>\forall ~ \omega_n \in \Omega</math> | ||
###<math>\forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]</math> | ###<math>\forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]</math> | ||
####Если <math> \zeta_{\theta} | ####Если <math> i=0 \vee \zeta_{\theta} \bmod 2 \neq 0</math> | ||
#####<math>\alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}</math> | #####<math>\alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}</math> | ||
#####<math>\forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]</math> | #####<math>\forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]</math> | ||
######Если <math> \zeta_{\varphi} | ######Если <math> i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0</math> | ||
#######<math>\alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}</math> | #######<math>\alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}</math> | ||
#######Position <math>\leftarrow</math> <tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].[[Распространение радиоволн ВЧ/Антенна|Антенна()]].Позиция()</tt> | #######Position <math>\leftarrow</math> <tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].[[Распространение радиоволн ВЧ/Антенна|Антенна()]].Позиция()</tt> | ||
Версия 01:42, 2 ноября 2016
Алгоритм
Идея последовательного приближения
Идея заключается в последовательном удвоении числа элементарных модельных экспериментов. Это продолжится до тех пор, пока результат текущего моделирования не приблизится к результату моделирования на предыдущей итерации:
, где
- - параметр моделирования, задаваемый пользователем.
Однако сравнение соседних итераций не дает достаточного условия на достижение заданной точности (основная причина этого - излучение по направлениям). Поэтому правильнее будет сравнивать итерации через одну, две и т.д.:
, где
- также будет задаваться пользователем.
- здесь - это параметр цикла, стоящего над циклами основной программы, .
При равномерном увеличении числа направлений излучения от первичного источника в два раза путем деления на 2 соответствующего шага по углу в процессе увеличения , только каждое второе направление будет новым, т.е. не учитанным на предыдущих итерациях. Другая половина будет повторять эксперименты, уже выполненные ранее. Поэтому в цикл основной программы введено дополнительное условие для учета этих повторений.
Шаги по азимуту и по зениту источника являются функциями от направления либо постоянными.
Угловой шаг дискретизации как функция ХН
Большинство современных вещательных систем используют панельные антенны с ограниченными углами раствора диаграммы направленности (ДН) в горизонтальной плоскости (до 120°) и очень малыми углами в вертикальной плоскости (до 20°). Соответственно, в таких системах происходит серьезное перераспределение излучаемой энергии в пространстве. Типичные коэффициенты усиления: 16-18 dBi. Поэтому одним из решений задачи оптимизации является использование динамического углового шага дискретизации как функции от характеристики направленности источника.
, где
- - начальная частота дискретизации;
- - функция ХН;
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - азимутальный угол;
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): k - коэффициент девиации.
Инициализация геометрической модели
Перерасчет высот с учетом кривизны земли и рефракции радиоволн в тропосфере.
Входной параметр Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h пересчитывается в соответствии с формулой:
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h'(x,y) = h(x,y)-\frac{-2 R_{eq}+\sqrt{(2 R_{eq})^{2}+4 r^{2}}}{2} \approx h(x,y)-\frac{r^{2}}{2 R_{eq}} , где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_{eq}=\frac{R_0}{1+R_0 \frac{dn}{dh}}
- эквивалентный радиус Земли, где
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_0=6371 - радиус Земли (км),
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \frac{dn}{dh}=grad~n - изменение коэффициента преломления с высотой.
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r=\sqrt{x^{2}+y^{2}} - расстояние до точки с высотой Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h(x,y) .
Основной цикл программы | Вариант 1
Предусловия
Основное течение
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow G().Набор источников()
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S: \varnothing то ВЫХОД
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ s_j \in S
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow S~ \backslash \left \{ s_j \right \}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Тип антенны().Амплитудно-частотная характеристика()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \omega_n \in \Omega
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\theta} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}
- Position Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Позиция()
- Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Создать луч(Position, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},~\alpha_{\varphi} )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ f\in
G().Множество отражающих объектов()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ t_m \in f
.Множество отражающих поверхностей()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t'\leftarrow t_m:~\min ( Расстояние(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Позиция(), Луч(s().Антенна().Позиция(),Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t_m )Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ t_m \in f
.Множество отражающих поверхностей()
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \rho_k \in P \leftarrow
G().Множество контрольных точек()
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k \in
s().Область регистрации луча (Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi},\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},
Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi}
) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t'
))
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho .Зарегистрировать(s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi} ,Расстояние(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho .Позиция()), G().Среда распространения()))
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k \in
s().Область регистрации луча (Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi},\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i},
Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi}
) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t'
))
- Если s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi}
,Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi}
) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t'
), G().Среда распространения()) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): >E_{end}
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s' \leftarrow s_II().Создать(s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi} ,Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ), G().Среда распространения()), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} , s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t' )
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow s'
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0
- Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\theta} \bmod 2 \neq 0
- Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]
- Переход на шаг 2