Распространение радиоволн ВЧ/Рей-трейсинг: различия между версиями

Материал из CAMaaS preliminary wiki
Перейти к навигации Перейти к поиску
Строка 48: Строка 48:
##<math>\forall ~ \omega_n \in \Omega</math>
##<math>\forall ~ \omega_n \in \Omega</math>
###<math>\forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]</math>
###<math>\forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]</math>
####Если <math> \zeta_{\theta} </math> : нечет. & <math>i>0</math>
####Если <math> i=0 \vee \zeta_{\theta} \bmod 2 \neq 0</math>
#####<math>\alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}</math>
#####<math>\alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}</math>
#####<math>\forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]</math>
#####<math>\forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]</math>
######Если <math> \zeta_{\varphi} </math> : нечет. & <math>i>0</math>
######Если <math> i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0</math>
#######<math>\alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}</math>
#######<math>\alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}</math>
#######Position <math>\leftarrow</math> <tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].[[Распространение радиоволн ВЧ/Антенна|Антенна()]].Позиция()</tt>
#######Position <math>\leftarrow</math> <tt> [[Распространение радиоволн ВЧ/Источник|<math>s_j</math>()]].[[Распространение радиоволн ВЧ/Антенна|Антенна()]].Позиция()</tt>

Версия 01:42, 2 ноября 2016

Алгоритм

Идея последовательного приближения

Идея заключается в последовательном удвоении числа элементарных модельных экспериментов. Это продолжится до тех пор, пока результат текущего моделирования не приблизится к результату моделирования на предыдущей итерации:

, где

- параметр моделирования, задаваемый пользователем.

Однако сравнение соседних итераций не дает достаточного условия на достижение заданной точности (основная причина этого - излучение по направлениям). Поэтому правильнее будет сравнивать итерации через одну, две и т.д.:

, где

также будет задаваться пользователем.
здесь - это параметр цикла, стоящего над циклами основной программы, .

При равномерном увеличении числа направлений излучения от первичного источника в два раза путем деления на 2 соответствующего шага по углу в процессе увеличения , только каждое второе направление будет новым, т.е. не учитанным на предыдущих итерациях. Другая половина будет повторять эксперименты, уже выполненные ранее. Поэтому в цикл основной программы введено дополнительное условие для учета этих повторений.

Шаги по азимуту и по зениту источника являются функциями от направления либо постоянными.

Пример ХН и зависимости углового шага

Угловой шаг дискретизации как функция ХН

Большинство современных вещательных систем используют панельные антенны с ограниченными углами раствора диаграммы направленности (ДН) в горизонтальной плоскости (до 120°) и очень малыми углами в вертикальной плоскости (до 20°). Соответственно, в таких системах происходит серьезное перераспределение излучаемой энергии в пространстве. Типичные коэффициенты усиления: 16-18 dBi. Поэтому одним из решений задачи оптимизации является использование динамического углового шага дискретизации как функции от характеристики направленности источника.

, где

- начальная частота дискретизации;
- функция ХН;
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \varphi - азимутальный угол;
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): k - коэффициент девиации.

Инициализация геометрической модели

Перерасчет высот с учетом кривизны земли и рефракции радиоволн в тропосфере.

Входной параметр Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h пересчитывается в соответствии с формулой:

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h'(x,y) = h(x,y)-\frac{-2 R_{eq}+\sqrt{(2 R_{eq})^{2}+4 r^{2}}}{2} \approx h(x,y)-\frac{r^{2}}{2 R_{eq}} , где

Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_{eq}=\frac{R_0}{1+R_0 \frac{dn}{dh}} - эквивалентный радиус Земли, где
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): R_0=6371 - радиус Земли (км),
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \frac{dn}{dh}=grad~n - изменение коэффициента преломления с высотой.
Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): r=\sqrt{x^{2}+y^{2}} - расстояние до точки с высотой Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): h(x,y) .


Основной цикл программы | Вариант 1

Предусловия

Основное течение

  1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow G().Набор источников()
  2. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S: \varnothing то ВЫХОД
  3. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ s_j \in S
    1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow S~ \backslash \left \{ s_j \right \}
    2. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Тип антенны().Амплитудно-частотная характеристика()
    3. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \omega_n \in \Omega
      1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\theta} : ~~ 0 \leqslant \zeta_{\theta} < \left [ \frac{\pi}{\left \langle \Delta_{\theta} \right \rangle} 2^{i} \right ]
        1. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\theta} \bmod 2 \neq 0
          1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta} \leftarrow \zeta_{\theta} \frac{\Delta_{\theta} (\zeta_{\theta})}{2^i}
          2. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \zeta_{\varphi} : ~~ 0 \leqslant \zeta_{\varphi} < \left [ \frac{2 \pi}{\left \langle \Delta_{\varphi} \right \rangle} 2^{i} \right ]
            1. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): i=0 \vee \zeta_{\varphi} \bmod 2 \neq 0
              1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\varphi} \leftarrow \zeta_{\varphi} \frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}
              2. Position Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Позиция()
              3. Ray Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \leftarrow Создать луч(Position, Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},~\alpha_{\varphi} )
              4. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ f\in G().Множество отражающих объектов()
                1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ t_m \in f .Множество отражающих поверхностей()
                  1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t'\leftarrow t_m:~\min ( Расстояние(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s_j ().Антенна().Позиция(), Луч(s().Антенна().Позиция(),Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t_m )Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): )
              5. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \forall ~ \rho_k \in P \leftarrow G().Множество контрольных точек()
                1. Если Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho_k \in s().Область регистрации луча (Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi},\frac{\Delta_{\theta} (\zeta_{\theta})}{2^i},\frac{\Delta_{\varphi} (\zeta_{\varphi})}{2^i}, Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ))
                  1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho .Зарегистрировать(s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi} ,Расстояние(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \rho .Позиция()), G().Среда распространения()))
              6. Если s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi} ,Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ), G().Среда распространения()) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): >E_{end}
                1. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): s' \leftarrow s_II().Создать(s().Напряженность(Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \omega_n,\alpha_{\theta},\alpha_{\varphi} ,Расстояние(s().Антенна().Позиция(), Луч(s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} ) Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \cap ~t' ), G().Среда распространения()), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): \alpha_{\theta},\alpha_{\varphi} , s().Антенна().Позиция(), Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): t' )
                2. Невозможно разобрать выражение (MathML с запасными SVG или PNG (рекомендуется для современных браузеров и инструментов повышения доступности): Недопустимый ответ («Math extension cannot connect to Restbase.») от сервера «https://wikimedia.org/api/rest_v1/»:): S \leftarrow s'
  4. Переход на шаг 2

Основной цикл программы | Вариант 2